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Thermal convection with strongly 
temperature-dependent viscosity 

By JOHN R. BOOKER 
Geophysics Program, University of Washington, Seattle 
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This paper experimentally investigates the heat transport and structure of 
convection in a high Prandtl number fluid layer whose viscosity varies by up to 
a factor of 300 between the boundary temperatures. An appropriate definition 
of the Rayleigh number R uses the viscosity at the average of the top and bottom 
boundary temperatures. With rigid boundaries and heating from below, the 
Nusselt number Nnormalized with the Nusselt number No of a constant-viscosity 
fluid decreases slightly as the viscosity ratio increases. The drop is 12% at a 
variation of 300. A slight dependence of N/No on R is consistent with a decrease 
in the exponent in the relation N cc Rp from its constant-viscosity value of 0.281 
to  0.25 for R 5 5 x lo4. This may be correlated with a transition from three- to 
two-dimensional flow. At R - lo5 and viscosity variation of 150, the cell struc- 
ture is still dominated by the horizontal wavelength of the marginally stable 
state. This is true with both free and rigid upper boundaries. The flow is strongly 
three-dimensional with a free upper boundary, while it is nearly two-dimensional 
with a rigid upper boundary. 

1. Introduction 
Almost all fluids exhibit temperature-dependent viscosity. Convective heat 

transport when the viscosity is strongly temperature dependent is important in 
contexts ranging from food and petrochemical processing to glass manufacture 
and volcanology. My interest in the subject stems from consideration of the 
thermal state of the earth‘s interior. Our knowledge of the rheological behaviour 
of the earth’s mantle is still in a rudimentary state. One thing can probably be 
said with certainty, however: whatever deformation mechanism actually occurs, 
it is highly temperature dependent. All proposed creep laws for the earth’s mantle 
require a rapid decrease in effective viscosity with increasing temperature (i.e. 
Gordon 1971; Weertman 1970; Rayleigh & Kirby 1970; Carter & Ave’Lallemant 
1970). The strongly nonlinear rise of heat transport with increasing temperature 
which this temperature dependence implies should play a dominant role in the 
regulation of the average internal temperature of the earth (Tozer 1967). An 
experiment which realistically models the earth‘s mantle would be extremely 
difficult as it would have to include such effects as a non-Newtonian stress/strain- 
rate relation, phase changes and pressure dependence. The measurements 
described in this paper are, therefore, most restricted in nature and are addressed 
to the fundamental effects of temperature-dependent viscosity. 
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Some information already exists on the effects of strongly temperature- 
dependent viscosity on convection in a horizontal fluid layer heated from below. 
Defining the Rayleigh number in terms of the viscosity a t  the average of the top 
and bottom boundary temperatures, Liang (1969) calculates that the critical 
Rayleigh number R, for the onset of convection is lower than for a constant- 
viscosity fluid. This is a direct extension of the results of Palm (1960) and Jenssen 
(1963) for fluids with weakly temperature-dependent viscosity. Liang’s result is 
experimentally verified by Hoard, Robertson & Acrivos (1970). One can infer 
that, near the critical Rayleigh number for constant viscosity, viscosity variation 
enhances heat transport. At 5*5R,, however, numerical calculations with free 
boundaries by Torrance & Turcotte (1971) show a decrease in heat transport 
relative to the constant-viscosity case. As the ratio of the viscosities at  the upper 
and lower boundary temperatures increases from 1 to 400, the relative heat 
transport drops by 35%. A further increase in total viscosity variation apparently 
does not produce a further decrease in heat transport. 

The effects of weakly temperature-dependent viscosity on the structure of 
thermal convection near the critical Rayleigh number has been studied in detail 
by Palm (1960), Palm, Ellingsen & Gjevik (1967) and Busse (1967). They find 
that the wavelength of the initial instability should be longer than with constant 
viscosity and that hexagonal cells should be the preferred pattern for a finite 
range of Rayleigh numbers above the critical value. Liang (1969) also finds an 
increase in the wavelength of the pattern near the critical Rayleigh number when 
the viscosity is strongly temperature dependent. The experiments of Hoard et al. 
(1970) partially confirm these predictions. They do find a slight stretching of the 
horizontal wavelength, but it appears to be less than expected, while the Rayleigh 
number range over which hexagons are stable appears to be larger than expected. 
The situation with large viscosity variation and high Rayleigh number is un- 
certain. I n  fact, the effect of Rayleigh number on convection wavelength is 
poorly understood even with constant viscosity. As Koschmieder (1974) points 
out, all the theoretical work predicts decreasing wavelength with increasing 
Rayleigh number while all the experiments show exactly the opposite. The 
numerical calculations of Torrance & Turcotte (197 1) assume two-dimensional 
rolls with the same horizontal wavelength as the marginally stable state with 
constant viscosity. Their streamline pattern suggests that the development of a 
highly viscous, nearly stagnant, layer at the top boundary decreases the effective 
cell height and changes the boundary condition from free to no-slip. In  addition 
to helping to explain the decreased heat transport, these changes should reduce 
the wavelength of the preferred motion. One might therefore expect shorter 
wavelength cells with variable viscosity than with constant viscosity. However, 
numerical experiments reported by Houston & De Bremaeker (1975) indicate 
that strongly temperature-dependent viscosity can increase the preferred 
horizontal scale of the cells by as much as an order of magnitude. Their result is 
desirable in the geophysical context because the surface evidence of upflow 
(oceanic ridges and hot spots) and surface evidence of downflow (trenches) are 
often separated by thousands of kilometres, while there is evidence to support 
the idea that the convective zone is less than 1000km deep (see McKenzie, 
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Roberts & Weiss 1974). One should note that internal heating has also been 
suggested as the reason for large horizontal wavelengths in the earth primarily on 
the basis of experiments by Tritton & Zarraga (1967). It seems clear now, however, 
that their experimental result was due to non-uniform heating resulting from 
temperature-dependent electrical conductivity. The correct result appears to be 
thatinternalheating decreases the cell widths (Thirlby 1970; McKenzieetal. 1974). 

Although all physical properties in the experiments described in this paper are 
temperature dependent, suitable choices of characteristic temperatures allow 
the Rayleigh number R and Nusselt number N to be defined in their usual form. 

Thus R = agATd3/~v, N = qd/kAT, 

where a: = thermal expansion coefllcient, g = gravity, A T  = temperature 
difference across the fluid, d = depth of layer, v = kinematic viscosity, q = heat 
transport per unit area, K = k/pc = thermal diffusivity, k = thermal conduc- 
tivity, p = density, and c = specific heat. 

All properties are evaluated at the average of the top and bottom boundary 
temperatures. This follows almost all previous work on temperature-dependent 
viscosity. The choice of characteristic temperature makes little difference for 
properties with weak temperature dependence. For viscosity, however, one can 
postulat,e a variety of characteristic temperatures depending on what one 
hypothesizes about the physics of the convection process. For instance, the mean 
ofthe boundary temperatures is the natural choice if the dynamics are dominated 
by a balance between the buoyancy of rising and falling thermal plumes and the 
shear force exerted by the plumes on an isothermal and hence isoviscous core 
(Booker 1972). With this balance one can also predict that choosing t,he viscosity 
a t  the mean temperature should remove the effect of the variable viscosity on 
the heat transport. This turns out to be true for small total viscosity variations. 
For rigid boundaries and large viscosity variation, we shall see in $3  that the 
measured deviation from this prediction is small, but significant. We shall also 
see that, for fixed total viscosity variation, the deviation from the constant- 
viscosity Nusselt number is independent of the Rayleigh number. Simple 
measurements of the cell aspect ratio with a rigid bottom and rigid and free top 
boundaries are also described in $4. 

2. Experimental apparatus 
The critical choice in designing the experiment is the working fluid. I used 

Polybutene no. 8, which is an oil manufactured by Oronite Division of Standard 
Oil of California. It has almost no harmful properties in normal laboratory use, 
and because it is essentially immiscible with water and alcohol, it  avoids prob- 
lems inherent in materials such as glycerine whose viscosity variation may be 
adversely affected by water in the laboratory environment. The properties of 
Polybutene no. 8 in the temperature range T = - 20°C to + 80°C are: 

Density 
Specific heat 
Heat conductivity k = 3-10 x lo-*- 4.48 x lo-' T & 1 yo cal/cm s "C, 
Dynamic Viscosity ,.!A = pv = 0.01 exp [1.12 + 6.50exp (- T/65-5)] & 1 % p. 

p = 0.863 - 0.57 x 
c = 0.46 + 1-33 x 

T rf: 0.001 g/cm3, 
T rt_ 0.1 cal/g"C, 
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Temperature ("C) 

FIGURE 1. Dynamic viscosity of Polybutene no. 8 as a function of temperature. 
+ , measured points; --, empirical relation given in the text. 

All the properties essentially agree with Liang & Acrivos (1970) except the 
density. Using their value for the thermal expansion coefficient, a = 0.88 x 10-3, 
I was unable to make my Nusselt number measurements with small total viscosity 
variation agree with those of Rossby (1969). I then measured the density with a 
hydrometer calibrated with distilled water and found that a was 35% less. 
I presume manufacturing tolerance for the expansion coefficient must be large. 
With the new a of 0.57 x my measurements are within 1 yo of Rossby's. The 
viscosity was measured with a cone-plate viscometer calibrated with silicone 
oil standards. The measured points are plotted in figure 1. The total variation 
between T = - 20" and + 80" is approximately three orders of magnitude. 

The Prandtl number P = pc/k is always very large for the experiments. It is 
about lo4 using the mean properties. The maximum value of P, at the top 
boundary, is 3 x lo5 and the minimum value, at the bottom boundary, is lo3. 

A cross-section of the experimental apparatus is shown in figure 2. The cell 
consists of two 29 ern diameter aluminium plates separated by fluid. The upper 
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Spacer Air gap Cooling channel Thermocouples 
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FIGURE 2. Cross-section of the convection apparatus. 

plate is 6 em thick and is cooled by circulating ethyl alcohol from a constant- 
temperature bath. The bath stability is about 5 0-01°C. The coolant flows 
through a concentric spiral trough milled into the plate. The top of this trough is 
formed by a plastic lid which also serves to suspend the plate at the proper height 
by means of four external pedestals. The replaceable spacers which are part of 
the pedestals just span the gap occupied by the fluid. This gap can be varied 
from 0 to I0 em. The lower plate is 3 ern thick and actually consists of two plates 
with a resistance heater laid in a milled slot in the bottom of the upper part. The 
side of the cell is a piece of methyl-methacrylate tubing. At room temperature 
this tube fits tightly over the rim of the heater plate. At elevated temperatures, 
however, differential expansion resulted in leaks, which were stopped with a 
bead of flexible silicone glue. 

The temperatures of the top and bottom plates are measured with copper- 
constantan thermocouples potted into holes which penetrate to within 1 mm of 
the fluid surface. Each plate has three measuring points along a radius and all 
the thermocouples are matched to within 0.03 "C over the range - 20 "C to 
+90°C. The thermocouple reading device is a digital voltmeter of resolution 
1pV and the reference junction is in a commercial ice-point cell which uses a 
solid-state refrigerator to maintain a water-ice mixture inside a mechanical 
bellows. Its stability is about 4 0.05 "C. The overall accuracy of the temperature 
measurement is 5 0.1 "C. The temperature difference across the fluid is accurate 
to 5 0.05"c. 

Accurate Nusselt number measurements require careful attention to the flow 
of heat away from the lower plate by paths other than through the fluid. This is 
particularly important in this experiment, where the temperature difference 
between the bottom plate and the laboratory is very large. My approach is to 
heavily insulate the bottom and sides of the cell with styrafoam and then measure 
the effective conductivity of the total insulation. The procedure is to memure 
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the temperature drop across the cell for a fixed upper boundary temperature and 
no power input to the lower boundary. The heat flow through the cell must equal 
the heat supplied by the environment, Q,. With sufficient insulation, Q, is always 
too small for convection and is easily determined using the conductivity of the 
fluid. The entire procedure is repeated several times with the bottom temperature 
varying over the range used in the experiment. This technique suffers from some 
inaccuracy because the temperature structure in the plastic sides is not the same 
as during the convection experiment. Thus the heat lost by the plastic sides is not 
properly accounted for. I estimate, however, that the maximum error in Q, is less 
than 10 yo. In  the worst case, this contributes a 1 yo error to the Nusselt number. 

Another path for heat conduction from the bottom to the top plate is through 
the plastic sides. This contributes about 10% of the total conductive heat 
transport. When the top plate temperature is less than O'C, the sides shrink 
tightly onto the plate, making good thermal contact. The conductive transport 
is then estimated as 0.9 & 0.1 times the transport that would exist if the plastic 
were actually sandwiched between the top and bottom plates. At top tempera- 
tures above 0 "C, an air gap which is sometimes partially filled with oil develops. 
This facilitates increasing the fluid depth without dismantling the cell, but it 
complicates calculations of the heat transport by the sides. The effect of the air 
gap is important in the determination of Q, as well as some of the convection 
experiments. I have taken the conservative viewpoint that, for top boundary 
temperatures of about 0 "C, the conductive transport is 0.5 0.5 times the 
transport expected if the plastic were sandwiched between the plates. Uncer- 
tainty in the wall conduction is most important a t  small Nusselt numbers. In the 
worst case it contributes a 2.4 yo error. In  most cases it actually contributes less 
than 0.5 yo. 

The geometry of the apparatus is not particularly suitable for studying the 
internal structure of the flow. The top and bottom are opaque and the round 
sides preclude use of Krishnamurti's (1968) technique for producing a plan view 
of the motion with a camera aimed at the side of the cell. My observations are, 
therefore, of the simplest type. A collimated beam of light is passed through a 
vertical slit and then aimed at the side of the cell to illuminate a thin slice of the 
fluid. The flow is visualized by suspending aluminium flakes in it and photo- 
graphed by a camera held approximately perpendicular to the light beam. I n  
order to permit easy removal of the distortion due to the curved sides, a photo- 
graph is also taken of a ruler laid down along the light path in the cell. 

3. Heat-flow measurements 
Nineteen Nusselt number measurements covering 'mean temperature ' 

Rayleigh numbers from 1-5 x lo4 to 4 x lo5 and ratios of the viscosities at the top 
and bottom boundaries from 1.4 to 300 were made during five experimental runs. 
The results are grouped by viscosity ratio in table 1. The Nusselt number is 
plotted against the Rayleigh number in figure 3, with different symbols for 
different groups of viscosity ratio. Each run was at  constant fluid depth with 
progressively increasing temperature difference. Thus the flow pattern a t  each 
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No. 

1 
2 
3 
4 
5 

6 
7 
8 

9 

10 
11 
12 

13 
14 

15 
16 
17 
18 
19 

vmEx/vmin 

2.47 
2.70 
1.41 
2.84 
4.1 1 

9.70 

9.75 
10.4 

31.4 

114 
127 
113 

152 
152 

262 
300 
284 
304 
287 

d 

1.000 
1.496 
5.060 
2.020 
5.060 

1.000 
1.496 
2.020 

1.497 

1.010 
1.497 
2.030 

1.497 
2.030 

1.010 
1-497 
2.030 
2-030 
2.030 

R 

14900 
58 700 

115000 
160 000 
397 000 

21 100 
66 500 

176000 

54 700 

15200 
56 100 

122 000 

69 000 
173 000 

22 300 
85400 

203 000 
207 000 
220 000 

N 

2.72 
3.99 
4.85 
5-34 
6.87 

2.92 
4.03 
5.31 

3.72 

2.56 
3.55 
4.47 

3.72 
4.86 

2.77 
3.87 
5.01 
5.04 
5.1 1 

E (%I  
3.4 
2.4 
0.4 
2.0 
0.6 

2.6 
2.0 
0.6 

2.0 

0.7 
0.6 
0.6 

0.6 
0.6 

0.7 
0.6 
0.6 
0.6 
0.6 

NiNO 
0.993 
0.991 
0.997 
1.001 
0.997 

0.967 
0.967 
0-969 

0,943 

0.930 
0.893 
0.904 

0.883 
0.891 

0.903 
0.865 
0.878 
0.879 
0.876 

TABLE 1. The Rayleigh number R and Nusselt number N are defined using the value of all 
temperature-dependent quantities at  the mean of the top and bottom boundary tem- 
peratures. No is the Nusselt number of a constant-viscosity fluid. 

step evolves from a flow with a lower total viscosity ratio. Between each pair of 
measurements, the bath thermostat and bottom plate current were changed in a 
step fashion. Near room temperature, the bath and top plate equilibrated in less 
than an hour. At top plate temperatures below 5 "C, the equilibration time for 
a change of only a few degrees was several hours. The bottom plate equilibration 
time was always several hours. Both plate temperatures were stable to within 
one least count on the digital voltmeter (0.03 "C) for at least 6 h before the 
measurements were recorded. Most steps lasted more than a day, with some 
requiring 3 days. 

Measurements 17 and 18 were made 65 h apart without adjusting the appa- 
ratus. The slight change in Nusselt number is exactly the right amount for the 
change in Rayleigh number. Both measurements are almost certainly equilibrated 
although the laboratory temperature changed slightly between the measure- 
ments. Measurement 19 was an attempt to  increase the total viscosity variation by 
increasing the bottom plate temperature. However, this demanded heat dissipa- 
tion in the cooling system in excess of its capacity and the top plate temperature 
necessarily rose. Thus, while measurement 19 has the largest temperature 
difference across the fluid, it  does not have the lowest top plate temperature or 
the largest viscosity ratio. 

The column in table 1 headed E (%) is the maximum percentage error in the 
measured Nusselt number due to uncertainty in the heat transport in the plastic 
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FIUURE 3. Nusselt number us. Rayleigh number for a fluid with temperature-dependent 
viscosity between horizontal rigid boundaries heated from below. The Rayleigh number is 
based on the viscosity at the average of the top and bottom boundary temperatures. The 
symbols indicate the ratio of the viscosities at the top and bottom boundaries as follows: 
0,  1.4-4.1; 0, 9.7-10.4; A ,  3 1 4 ;  +, 113-127; x , 262-304. The line through points with 
low viscosity ratio is the best fit t o  Rossby’s (1969) data and corresponds to an exponent 
/3 = 0-281. The dotted lines have /3 = 0.250 and are discussed in the text. 

sides. In  addition, the Nusselt number has an absolute error of about 2 %  
primarily due to the uncertainty in the thermal conductivity and depth of the 
fluid. The thermal conductivity affects all measurements in the same way. Thus 
the relative error in the Nusselt number measured is closer to 1 yo. 

It is convenient to normalize the Nusselt number to that for a constant- 
viscosity fluid with equal Rayleigh number. In  the h a 1  column of table 1, 

No = 0.184 R02’1 (1) 

is the best fit to Rossby’s (1969) high Prandtl number data for R > 4000. This 
line is also plotted on figure 3. Uncertainty in the Rayleigh number contributes 
less than 2 yo uncertainty to No. 

For viscosity ratios less than five, the normalized Nusselt numbers are all 
within 1 % of Rossby’s results. Considering the likely errors, this rather extra- 
ordinary agreement may be somewhat fortuitous. However, comparing measure- 
ment 1, which bas & high E ,  with measurement 3, which has a very low E ,  one 
can probably conclude that my estimate of the uncertainty in the heat trans- 
ported by the plastic sides is unduly pessimistic. One can probably also conclude 
that Koschmieder’s (1974) criticism of Rossby for measuring the heat transport 
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FIUURE 4. Nusselt number N vs. viscosity ratio for convection in a horizontal fluid layer 
with rigid boundaries heated from below. N is normalized with No, the Nusselt number for 
a constant-viscosity fluid at the same Rayleigh number. - , No defined using the 
viscosity at the mean of the top and bottom boundary temperatures; --- , No defined 
using the viscosity of the bottom, hot boundary; 0,  R N 2 x lo4; +, R > 5 x 10‘. The 
triangular data point is explained in the text. 

with a thin, low conductivity sheet sandwiched in the bottom plate is unwar- 
ranted. Koschmieder feels that Rossby’a bottom plate would not be effectively 
infinitely conducting. The geometry and conditions of the present experiment 
are very similar to Rossby’s, but there is no low conductivity layer in the bottom 
plate. 

As the viscosity ratio increases, the heat transport decreases relative to that 
in a constant-viscosity fluid with the same Rayleigh number. However, if one 
excludes the two measurements 10 and 15 with R - 2 x lo4, viscosity variation 
apparently does not affect the exponent /3 = 0.281 in the relation between the 
Nusselt number and the Rayleigh number. In  figure 3, the points with similar 
viscosity variation lie on lines parallel to the constant-viscosity line. This is 
illustrated in a slightly different way in figure 4, which is a plot of the normalized 
Nusselt number against the viscosity ratio. It is clear that, except for measure- 
ments 10 and 15, all the points lie very close to a single line. Thus the normalized 
Nusselt number is independent of the Rayleigh number for R 2 5 x 104. In  fact 

(2) 

I do not have a simple explanation for the apparent linearity of this relation. It 
is interesting to note, however, that although this line is a least-squares fit to the 
data for viscosity variation greater than 9, excluding points 10 and 15, it fits all 

for vmax/Vmin 2 10 

NIX, = 1.033 - 0.0649 log,, (vmaX/vmin) & 0.01. 
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but measurement 3, the point with the lowest viscosity ratio. One could, therefore, 
speculate that the straight line extends to constant viscosity. This would imply 
that Rossby’s data and point 3 are 2 yo too low and that the relation between 
the normalized Nusselt number and the viscosity ratio approaches constant 
viscosity with a finite slope. On the basis of the measurement errors involved, 
one cannot rule out this possibility. However, an experiment reported by Booker 
& Nir (1971) supports the curve in figure 4, which approaches constant viscosity 
with a zero slope. Using Polybutene no. 8 in an apparatus described by Liang & 
Acrivos (1970), the measured normalized Nusselt number was constant to within 
0.5% with viscosity ratios from 1-3 to 2.3 although the mean was nearly 5 %  
less than Rossby’s value. I suspect that this discrepancy was again due to an 
incorrect thermal expansion coefficient for the polybutene. If the mean Nusselt 
number at the highest viscosity ratio studied by Booker & Nir (7-75) is normalized 
with respect to the mean of their data for low viscosity ratios, the result is 
the triangle plotted on figure 4. This point falls very close to the empirical curve 
based on the data in this paper and strengthens my conclusion that the true value 
of the normalized Nusselt number a t  constant viscosity is very close to 1.00 and 
the slope of the curve as it approaches constant viscosity is zero. A definitive 
answer to the question of the slope for small viscosity variation should be 
tractable theoretically. 

For comparison, figure 4 also shows the normalized Nusselt numbers based on 
the Rayleigh number using the viscosity a t  the temperature of the bottom 
boundary. A basic difference is that the curve of normalized Nusselt number ws. 
viscosity ratio approaches constant viscosity with large negative slope. The curve 
is concave upwards and its shape suggests that it approaches an asymptote for 
very large viscosity ratios. This might be reasonable if, as in Torrance & Turcotte’s 
(1971) numerical experiment, the flow eventually becomes confined to a small 
region near the bottom boundary. Clearly an experiment with a total viscosity 
variation of a t  least a factor of lo4 is required to investigate this further. 

One can also plot the normalized Nusselt numbers based on the viscosity at 
the top boundary. They are not plotted on figure 4 because the slope is very large 
and positive near constant viscosity. The slope increases with increasing viscosity 
ratio and the Rayleigh number based on the top boundary viscosity rapidly drops 
below the critical value for constant viscosity, making any comparison dubious 
at best. 

The two low Rayleigh number points (measurements 10 and 15) which deviate 
by a considerable amount from (2) are of some interest. Their deviation of 3% 
is not large enough that we can completely rule out measurement error, but it is 
obviously large compared with the scatter of the other data. The fact that both 
points deviate by the same amount in the same direction suggests a common 
cause. A possibility which immediately comes to mind is the transition from two- 
to three-dimensional motion at  the onset of the ‘ bimodal’ instability discussed 
by Busse (1967) and Busse & Whitehead (1971). This is a convective instability 
of the steep thermal gradients in the thermal boundary layers. For constant 
viscosity and high Prandtl number, it should occur at R, = 2.3 x 104. For water 
(P = 6.8) there is an obvious increase in the exponent /3 in the relation between the 
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Nusselt number and the Rayleigh number above the transition (Silveston 1958; 
Rossby 1969). At high Prandtl number the exponent change decreases, although 
it is still just discernible in the results of Liang & Acrivos (1970) using Polybutene 
no. 8 (P N lo4). A slope change is not apparent in Rossby’s (1969) high Prandtl 
number data. This is confirmed by my data for a viscosity ratio less than 10. It 
is not obvious what should happen when the viscosity is temperature dependent. 
The top, cold boundary layer is more stable because it is more viscous while the 
bottom, hot boundary layer is presumably less stable. However, the results with 
a viscosity ratio of about 100 can be explained if the exponent p drops from 0.281 
to 0.250 for R < 5 x lo4, as one can see in figure 3. The results with a viscosity 
ratio of about 300 require a transition at R N 8 x lo4. Although the transition 
Rayleigh numbers are higher, this change in ,8 is comparable to the results of 
Silveston (1958) and Rossby (1969) at low Prandtl number. A lower transition 
R requires a larger change in p. Higher transition Rayleigh numbers are appa- 
rently ruled out by measurements l l  and 16. This matter clearly warrants 
further study. 

4. Cell structure 
The convection wavelength is measured for both free and rigid upper boun- 

daries at a Rayleigh number of about 8 x lo4. The free boundary is achieved 
using a 3 mm air gap between the fluid surface and the upper plate. The insulat- 
ing effect of this gap limits the maximum viscosity ratio to about 150. Both 
experiments are therefore performed at this ratio. This method of establishing 
the upper boundary temperature is not entirely satisfactory because it permits 
horizontal temperature gradients at the fluid surface. The temperature at the 
top of the fluid layer under free boundary conditions is measured with a small 
thermocouple probe inserted through a hole in the top plate. The probe can 
measure both the temperature in the air and the temperature in the fluid and 
can be manipulated horizontally in a limited way. The measured horizontal 
gradients are surprisingly small. Within about half a centimetre of the hole, 
temperature variation is less than one degree. Unfortunately, the hole, which 
was drilled for the purpose of adding and withdrawing fluid, is located so close 
to the edge of the upper plate that the distortion of the curved plastic side walls 
makes it impossible to determine what relation the temperature measurement 
has to upwelling and downwellings. 

Photographs of the cell cross-sections lined up with the ruler laid along the 
light beam are shown in figure 5 (plate 1). Although the focus deteriorates 
towards the centre of the apparatus, the repeated cellular flow is clearly visible 
for the rigid top boundary. The pattern is almost certainly concentric rolls. The 
most readily identifiable point in each cell is the point of no motion. However, 
in estimating the wavelengths one should note that this point appears to be 
displaced towards the upwelling from the actual centre of the roll. Thus one must 
measure the distance between the same points in every second roll. From the five 
most clearly visible rolls, one obtains three independent estimates of the wave- 
length. The results are given in table 2. 
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Boundaries vmax/vmln R d (cm) h (cm) k ktn k8 k9 

Rigid-rigid 142 8.8x lo4 1.50 3.5+0-16 2*69+0*12 2.80 2.58 2.91 
Rigid-free 147 8 . 0 ~  lo4 1.43 3.25k0.05 2.76+0*05 2.68 2.45 2.77 

TABLE 2. Wavelength h and non-dimensional wavenumber k = 2nd/h. d is the layer 
depth, kth is for the marginally stable state reported by Hoard et al. (1970), k8 and k9 are 
the wavenumbers for 8 and 9 concentric rolls in the apparatus. 

The structure when the top boundary is free is much more complicated. By 
shifting the light beam slightly off the diameter of the apparatus, it is fairly easy 
to minimize the wavelength of a cellular pattern such as that visible in figure 5 
between 8 and 11-25 em. The centres of the upwellings and downwellings are 
fairly easily identifiable, giving two independent estimates of the cell half- 
wavelength. However, the regular roll structure of the rigid case is never seen. 
The pattern is clearly three-dimensional. 

In  interpreting the measured wavelength, it is important to remember that 
the flow structure is quantized in a finite apparatus. For the rigid-top case, the 
observed wavelength is shorter, but not significantly, than that required for 
eight rolls and longer, but not significantly, than the theoretical wavelength for 
the marginally stable state in an infinite layer with strongly temperature- 
dependent viscosity. The wavelength appears to be significantly longer than that 
required for nine rolls. If the wavelength wanted to be equal to that in the 
marginally stable state, I would expect nine rolls since kth is closer to k, than 
k,. I therefore conclude that the flow wavelength is slightly longer than that in 
the marginally stable state. The magnitude of this effect is probably about 3 %, 
although the increase in wavelength over that in the marginally stable state 
with constant viscosity is about 13 %. 

The wavelength with the free upper boundary is just right for nine rolls. It is 
also equal to the wavelength for the marginally stable state with constant 
viscosity. There therefore appears to be no effect of the variable viscosity or 
finite amplitude on the convection wavelength. This conclusion, however, is 
complicated by the fact that the flow clearly does not consist of concentric rolls. 
I n  fact the cross-section is rather similar to a photograph of the cross-section of a 
hexagonal cell shown by Koschmieder (1974). The flow was initiated by bringing 
both the top and bottom boundaries as rapidly as possible to their final tempera- 
tures and then letting the apparatus run for a day. This has the advantage that 
the flow begins with a viscosity structure which is presumably similar to the 
final state. It is well known, however, that rapid heating can result in cells with 
hexagonal planform. If this is indeed the case, and if the wavelength in table 2 
represents the shortest cross-section of the hexagon, the observed wavelength is 
a factor of 1/43 less than that in the marginally stable state with constant 
viscosity. 

I suspect that the actual flow structure with the free boundary is in the form 
of wavy sausages of the type shown by Rossby (1969) for moderate Rayleigh 
number. The Rayleigh number must, therefore, be well above that at the onset 
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of bimodal instability, but well below that a t  the onset of the less-ordered ‘spoke’ 
instability (Busse & Whithead 1971). No time dependence was evident with 
either boundary condition on a scale comparable with the thermal diffusion time 
(lo3 s). With the rigid top boundary, three-dimensional effects are weak or 
absent. The Rayleigh number must be close to or below that required for three- 
dimensional flow. This is consistent with the discussion at the end of the previous 
section on heat transport. 

5. Conclusion 
One can draw three basic conclusions from the experiments reported in this 

paper. 
(i) Defining the Rayleigh number using the viscosity at the mean of the top 

and bottom boundary temperatures nearly removes the effect of strongly 
temperature-dependent viscosity on convective heat transport between hori- 
zontal rigid boundaries. As the ratio of the viscosities at the top and bottom 
boundaries increases, the Nusselt number normalized to that of a constant- 
viscosity fluid decreases. The decrease is less than 1 % up to a viscosity ratio of 
4, reaching only 12 yo at a viscosity ratio of 300. The decrease is much less than 
that calculated by Torrance & Turcotte (1971) for free boundaries. 

(ii) The normalized Nusselt number is nearly independent of the Rayleigh 
number. The slight increase in relative heat transport for viscosity ratios greater 
than 100 and a Rayleigh number of about 2 x lo* may be due to the effect seen 
in constant-viscosity convection at  Prandtl numbers or order unity: as the flow 
passes through the transition from two- to three-dimensional flow, the exponent 
in the relation between the Nusselt number and the Rayleigh number increases. 
While this explanation is reasonable, it is not well constrained by the available 
data and needs further study. 

(iii) There is no evidence that viscosity variation by more than two orders of 
magnitude has any major effect on cell structure other than to increase the 
Rayleigh number at which transition to three-dimensional motion occurs. At a 
Rayleigh number of about 106, the horizontal scale with a free top boundary is 
still dominated by the wavelength of the marginally stable state with constant 
viscosity. With a rigid top boundary, the wavelength is not significantly different 
from that in the marginally stable state with strongly temperature-dependent 
viscosity, although it is slightly longer than that in the marginally stable state 
with constant viscosity. If temperature-dependent viscosity can produce large 
horizontal stretching, it must require much greater total viscosity variation than 
I have investigated. 

This work was supported by the National Science Foundation under Grants 
GA-36093 and GU-2655 and by the National Aeronautics and Space Administra- 
tion under Grant NGL-05-020-232. I am indebted to D. Fountain and C. Gantet 
for help with the experimental work. 
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